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Abstract. Potentials of the r-(’+’)  power type are studied as the superposition of Yukawa 
potentials. The SL(2, R) group acting on the quadrivector impulsion considered as a 
quaternion generates a compact self-adjoint operator deduced from the Schrodinger 
operator by a Fourier-Fock transformation. The operator is approximated by finite rank 
operators and gives the spectrum of energy as a function of the coupling constant, the 
angular momentum and the exponent s. 

1. Introduction 

Solutions of the Schrodinger equation for a central potential V(r),  singular at the origin 
r = 0, have interested both mathematicians and physicists (Landau and Lifschitz 1966, 
Simon 1971a) for a long time. Mathematics is mainly concerned with self-adjointness 
properties of the differential operator, while physics has something to learn from the 
rather strange behaviour of the energy levels in the vicinity of the attractive r-’ 
potential. 

In this paper we study the discrete spectrum of the Schrodinger operator Ho+ V ( r )  
for a central attractive potential of the inverse power type, written in the form 

V ( r ) =  - g / r S + ’ ,  g’o (1) 

We first classify the different potentials according to their exponent s, and we follow 

In the range -2 < s < -1 this potential is in the class L2 + (L“), (Simon 1971b) (i.e. 

In the range - 5 S s  <0,  V(r)  is in the class R +(La)€ where the R condition is a 

Kat0 and Simon (Simon 1971b). 

V E ,  V(r )  = V t ( r )  + Vt(r) with VL(r) E L2 and 1 1  V:(r)ll, < E ) .  

Rollnick one (Simon 1971b): 

1 

We give tables and curves of the first energy levels as functions of the coupling 
constant g, the exponent s and the orbital quantum number 1. 

The technique uses a Sturmian approach already developed for a larger class of 
interactions (Gazeau and Maquet 1979). The Schrodinger operator is replaced by a 
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Sturmian operator, denoted by A,, equivalent to (Ho - and this 
operator is compact for E E C - R +  and V E R + (LOO)<. 

After a Fourier-Fock transformation (Gazeau 1978, 1979), the algebraic nature of 
the transformed Sturmian operator is recognised as a linear superposition of represen- 
tation operators of SL(2, R). Two advantages emerge from this approach. First, the 
matrix elements of this operator are universal in the sense that once computed, 
superposition of potentials implies superposition of universal matrix elements. Besides, 
the projected operators A , ,  on each 1 angular subspace are compact self-adjoint 
operators on appropriate Hilbert spaces and can therefore be approximated by finite 
rank operators. 

Let us now begin the next section with a study of the projected Sturmian operator 
A , / .  

M C1 Dumont-Lepage, N Gani, J P Gazeau and A Ronveaux 

V(Ho - 

2. SL(2, R) Sturmian technique 

The trick in this approach uses the exponential e-yr in the Yukawa potential as a 
Laplace kernel. The potential is then, by superposition, the Laplace transform of a 
power. 

Explicitly, the potential 

V ( r ) =  - g / r s t 2  

is the Laplace transform 

Let us first summarise the Fourier-Fock technique. 
(i) The Fourier transform of the Schrodinger equation, 

[ - ( t i 2 / 2 m ) ~ * - ~ ] $ ( r ) =  - V ( r ) $ ( r ) ,  ( 5 )  

gives the following integral equation for the Fourier transform of the wavefunction 
(Bethe and Salpeter 1957): 

with 

p o  = (-2 mE)1’2 ( E  < 01, 

and where ~ ( p ) ,  V,(p, p ’ )  are the Fourier transforms of the wavefunction + ( r )  and the 
elementary potential ePyr/r  respectively. 

(ii) Group theory can be applied to the p integral equation after the introduction of 
the quaternionic field and a stereographic projection as in the Fock technique. 
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Let us first identify the four-vector ( p o ,  p )  ( p o ,  p l ,  p 2 ,  p 3 )  with the quaternion x 
written in matrix form as 

with norm 1 ~ 1 ~ = p : ) + l l p / 1 ~ .  

manifold or quaternion of unit norm) via the stereographic projection 
Now we map the quaternion x onto the point 6 belonging to the S3 sphere (SU(2)  

(9 )  <E s - 1  ( P o )  . x = x (2p ,  7 x - I  = X P ,  

where X = ( p o ,  - p ) .  
It follows that 

I5l2 = 5:,+115112 = 1, 
with 

This quaternionic transformation is a homographic one belonging to the group SL (2, R) 
acting as conformal transformation on Wf.: 

(ad -bc = 1 ’ 

This one-to-one mapping sends the hyperplane ( p o  fixed) onto the three-dimensional 
unit sphere, and as usual the point at  infinity goes to the South pole (see figure 1). 

Figure 1. Quaternion mapping. 

f. We identify any real number a with the quaternion (a,  0). 
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With each function x ( p o ,  p )  = x ( p )  which is square integrable on the hyperplane 
Hpo, the Fock transformation Spo associates a function on the SU(2)  manifold. The 
correspondence is given explicitly by 

or 

(gi,:4 )(XI = JpD ( 2 p o / l ~  12)24p(,(~-' ( p o ) . ~ ) .  

11 + ( I 2  = 4p;//xi2.  (16)  

(15) 

In the inverse transformation we use the property 

(iii) The integral equation in the HpO hyperplane now becomes an integral equation 

(a) The Euclidean three-dimensional measure is transformed in the following way: 
on the SU(2)  manifold via the stereographic transformation. 

[ ( ~ P o ) ~ / / x ~ ~ ]  dp = dp(5) =sin2 a sin 8 d a  de d d  (17) 
where (a ,  8, 4 )  are spherical coordinates of the unit quaternion 5 on the SU(2)  
manifold. 

The inner product in Fpu = L: (Hpo = ( R 3 ) )  is gP,, related to the inner product on 
Ep,, = L i  (SU(2))  by 

d P X ( P 0 ,  P ) X ' Y P o ,  P) = (x7 X')F," = ;(I1 + 5124po,  4b")E,, (18) 
and 

1 dp(04p,(s)4bE(5) = 4b,,)~,~ = ( 1 / 2 ~ E ) ( l x i ~ x ,  x ' )F , ( ,  (x,  x ' ) F , , + ~ ,  (19) 

where 

4 P O  = @P"X, 4 b,, = @POX ' 
and where Fpo+l is the first Sobolev space, i.e. the Hilbert space with the inner product 

The linear transformation gp, is thus an isomorphism between the spaces Fpo+l and 

(b) The homographic action on the kernel gives the result 

(x,  X')F,,+I* 

EPO. 

(llP-Pf1I2+Y 1 = I(Po,P')-(Po-Yh,p)l-2 2 2 -1 

with 
1 - y h  

t - , n = ( O  ).  
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(iv) The Schrodinger equation is therefore transformed into an eigenvalue problem 
for the operator A,:  

with U = mg/poh,  

This integral operator is compact, self-adjoint and positive. The Poisson kernel in R4 
appears in the computation of the last term: 

and the multiplication of a quaternion by e-‘ is equivalent to the contracting conformal 
action 

The Sturmian operator A,  is now written in terms of group representation operators: 

A,  =- (%)’+I loa d p p s  la dr %‘(g(p)S(t)) 
r ( s + i )  h o 

where %’ is a local representation of SL(2, R) on E ,  defined by 

with 

g-’ = (,“ d”) E SL(2, R). 

The matrix elements of this representation with respect to the hyperspherical 
harmonics Yflrm(t)  (Gazeau 1978, 1979)) n > I ,  J m ]  s I (Coulomb Sturmian basis) are 
given by 

b if n,=n’ 
-c if n, =n. 
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Let us now separate the variables on the S 3  sphere into the hyperspherical form 
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4 ( t )  = a l ( a )  sin’aY/,(O, ~ b ) ,  (29 )  
where Ylm are the usual spherical harmonics. The initial eigenvalue problem then 
becomes 

( I  - v A , l ) a l ( a )  = 0. (30)  

The operator As,[ now acts on the Hilbert space of functions al(cy) satisfying 

From equation (26 ) ,  this projected operator is also a linear superposition of local 
representation operators T’+’ of S L ( ~ ,  R). 

The matrix elements of this operator in the orthonormal basis of Gegenbauer 
polynomials Ni,y2i?: (cos a )  ( i  = n - 1  > 0; Ni,[ are normalisation constants) are given 
by 

30 

x 2Fl[1 -i<, i ,  +21+ 1 ;  i ,  - i, + 1;  p 2 / ( p 2  - 1 ) ] ) /  dt exp [-(i’+ 1)t-j). 

Let us note that 

( A s , / ) i , j  = (2p,/fi)”1Ai,j(s, 1 )  (i, j > 0).  (33) 
The numerical matrix elements 
respect to p by 

1) are then given after a trivial integration with 

(21 + 1 - s),..1 ( s  + l ) l -g  ( s  + l) j-g 
( v - l ) !  ( i - v ) !  ( j -v ) !  

where 
T(a  + n )  

U a )  
(a),,  = ~ (Pochhammer symbol), 

(34 )  

the matrix A = (Ai,i(s, I ) )  being symmetric. 
(v) Let hq(s,  1 )  be the qth eigenvalue of the infinite symmetric matrix A, and v,(s, 1) 

the inverse of the qth eigenvalue of the operator AS,[; then h,(s, 1 )  and vq(s,  I )  are 
obviously connected by the relation 

Let us avoid dimensionality problems by defining first 

g = g’LS, K = 2mg’/ f i2 ,  
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and choosing the units such that (Rydberg units) 

h2 /8  mL2 = 1 ; 

the energy levels (numbered by q )  are finally given by 

E,(s, I ) =  - (KA,(s, 

3. Numerical results 

In order to draw the curves E,(s, I )  for fixed 1, in  the interval -2 < s < 0 the eigenvalues 
A,(& 1 )  were computed on a computer DIGITAL DEC system 2050. The program was 
written in FORTRAN using the subroutine EIGEN of IBM, which gives the eigenvalues 
(and the eigenvectors on request) of a real symmetric matrix. Since the infinite matrices 
A(s, I )  are compact, they can be approximated by finite rank matrices. The approxima- 
tions of order f, A"'(s, I )  are obtained by selecting the first f rows and columns of the 
original matrices. The spectrum of A ( f ' ( ~ ,  I )  is denoted by A f) (s, I )  and the sequence 
(A,  (s, l),<f must converge to the required value A,(s, I ) .  The rate of convergence is 
good in the interval -2 < s < -0.5, but in the range -0.5 s s < 0 the slow convergence 
has been accelerated by the Aitken A2 process (Brezinski 1977). It is interesting to 
notice that in that range the potential loses the L2 character L2 + L: as indicated in the 
Introduction. In the Coulomb case (s = - 1) all truncated eigenvalues give the exact 
value for the Coulomb levels: 

(f) 

When s =  -2  the symmetric A matrix takes a tridiagonal form, and its elements are 
defined by 

[Aii(-2, I )  = 2, 

It is now the matrix of sa non-compact operator owning a continuous spectrum. 
In the 1 = 0 case the Aij(-2, 0) are 2 (if i = j ) ,  1 (if i = j + 1 or i = j - 1) or 0 (otherwise), 
and it is easily shown (Wilf 1970) that the spectrum is the interval [0,4]. Then, from the 
behaviour of the v,(s, 0) in the neighbourhood of s = - 2 (see figure 2) it can be deduced 
that 

Eq(s, 0 I s + - 2 +  -4K, v q  = 1,2 ,  . . * * (41) 

Now, we notice the absence of crossing of energy levels in the neighbourhood of s = - 2 
(see figure 5 or figure 6) and therefore the energy levels take the same value for all 
angular momentum I ,  i.e. 

It follows that 
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-2 ' l o  -1 

S- 

Figure 2. Eigenvalues Aq(s, O ) ;  q = 1, 2, 3;  i = O ,  

In the s = 0 case, expression (34) becomes 

The matrix elements are those of a non-compact operator, the spectrum of which is 
included in the interval (0,4) if 1 = 0. Schwartz (1976) showed that when s is close to 
zero the eigenvalues have the following behaviour: 

where 2, is the qth zero of the Bessel function J,(x)  of order Y = (21 + l ) /s .  It follows 
that at the limit point s = 0, the A,(s, 1) (for fixed I )  converge to the same value: 

A*(O, E )  = 4/(21+ (46) 

Thus there exists for each 1 a critical value of the coupling constant g (and thus of K )  
denoted by g? ( K ?  ) which drastically modifies the behaviour of the energy levels: 

(47) g: = L2(2E + 1)2, KT = (21 + 1)2/4, 

and 

E,(s, 1 )  - 0, Vq = 1 , 2 , .  . . andVg<gT 

I )  ---+-a, Vq = 1 , 2 , .  . . and Vg>gT. 
(48) 

s - 0  < 

S - 0  < 

Table 1 shows the rate of convergence of the eigenvalues ALf)(s, I )  of the truncated 
operators Af(s, 1). We show explicitly only the convergence of the first three levels in 
the 1 = 0 case for three typical values of the exponents. 
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Table 1. Convergence of the eigenvalues Akf’(s,  1)  to A,(s, 1 ) .  ( a )  s = -1.8, 1 = 0 ,  ( b )  
~ = - 1 . 2 ,  l = O ;  ( ~ ) ~ = - 0 . 4 ,  1 = 0 .  

Table l(6).  Table l (a) .  

f q = l  q = 2  q = 3  f q = l  q = 2  q = 3  

10 2,433 31 2.077 22 1.883 37 
15 2.433 31 2.077 65 1.903 13 
20 2.433 31 2.077 65 1.903 23 
25 2,433 31 2.077 65 1.903 23 

2 1.125 67 0.593 13 
4 1,125 95 0,629 34 0.449 90 
6 1.125 97 0.629 40 0.450 58 
8 1,125 98 0.629 41 0,450 59 

10 1.125 98 0,629 42 0.450 60 

30 1,125 99 0.62943 0.45061 Table l ( c ) .  

f q = l  q = 2  q = 3  

15 1,131 37 0,472 80 0,248 21 
20 1 ~ 1 3 5  28 0,484 10 0.260 59 
25 1.137 39 0.490 95 0.268 75 
30 1.138 68 0.495 50 0.274 55 
35 1,139 52 0.498 70 0,278 89 

60 1.141 31 0,506 33 0,290 51 

A* 1,141 89 0,509 92 0,298 34 

Table 2 gives the eigenvalues h4(s,  I )  of the operator A(s, I ) .  The interval -2 < s < 0 
is covered with nine points. The first three levels are given for an angular momentum I 
ranging from 0 to 4. 

Table 2. Eigenvalues A,(s, 1 )  of the operator A(s, 1). 

- 1.8 -1.6 - 1.4 - 1.2 

1 
1 = 0  2 

3 

2.4333 
A,,, = 4 2,0776 

1.9032 

1.7432 
1.2792 
1,0756 

1.3543 
0.8619 
0.6672 

1.1260 
0,6294 
0,4506 

1 
1 = 1  2 

3 

2,1534 
Amax = 4 1,9504 

1,8246 

1,3564 
1.1205 
0,9838 

0.9192 
0.6986 
0.5781 

0.6601 
0.4665 
0.3660 

1 
1 = 2  2 

3 

1.9967 
h,,,=4 1,8577 

1.7608 

1.1635 
1.0131 
0,9132 

0.7275 
0.5970 
0.5140 

0.4804 
0.3749 
0.3100 

1 
1=3 2 

3 

1.8904 
A,,, = 4 1,7860 

1.7079 

1,0417 
0,9344 
0,8572 

0,6150 
0.5270 
0,4657 

0,3829 
0.3157 
0,2700 

1 
1 = 4  2 

3 

1,8110 
A,,,=4 1.7280 

1,6630 

0.9553 
0.8736 
0,8115 

0.5394 
0.4752 
0.4277 

0.3209 
0.2740 
0,2400 
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Table Z-continued. 

S 

q -1.0 -0.8 -0.6 -0.4 -0.2 0 

1 
l = O  2 

3 

1 
1 = 1  2 

3 

1 
1 = 2  2 

3 

1 
1 = 3  2 

3 

1 
1 = 4  2 

3 

1.0000 0.9534 0,9881 
0,5000 0.4379 0,434 
0,3333 0.2748 0,261 

0.5000 0.3998 0.3394 
0.3333 0,2562 0.214 
0,2500 0.1858 0,153 

0,3333 0.2429 0.1868 
0,2500 0,1776 0,1355 
0.2000 0.1388 0.1050 

0.2500 0.1710 0.1231 
0.2000 0,1342 0.096 14 
0,1667 0,1099 0,078 27 

0.2000 0,1304 0,089 30 
0.1667 0,1071 0.073 04 
0.1428 0.090 47 0.061 47 

1,142 
0.5 1 
0.3 

0.310 
0,201 
0.145 

0,1531 
0,1133 
0.0889 

0.094 01 
0,0746 
0,0614 

0.064 74 
0.0536 
0.0456 

1.57 
0.8 Amax = 4 

0.315 
0.22 Amax = 0.4444 

0.1374 
0.108 A,,, = 0.1600 

0,078 05 
0.0652 A,,,,=0~081 63 
0.057 

0.050 82 
0.0438 A m a x  = 0.049 38 
0,038 

The corresponding energy levels are tabulated in Rydberg units for the constant 
K = 1 in table 3 and in table 4 when K = 10. 

The eigenvalues A,(s, I )  are also plotted in figure 2 ( I  = 0), figure 3 ( I  = l), and figure 
4 ( I  = 2) (q  = 1 ,2 ,3 ) .  The energy levels are plotted in figure 5 when K = 1 and 1 = 0, 1 
and figure 6 shows the levels when K = 10 and 1 = 0, 1 ,2 .  

Table 3. Energy levels for the value of the parameter K = 2mg'/h2 = 1. 

S 

q -2 -1.8 -1.6 -1.4 -1.2 -1.0 
- 
1 -4 -2.686 -2.003 -1,542 -1.218 -1.000 

1 - 0  2 -4 -2.253 -1.360 -0,809 -0.462 -0.250 
3 -4 -2.044 -1'095 -0.561 -0.265 -0,111 K* = 0.25 

1 -4 -2,345 -1.464 -0.887 -0.500 -0.250 
2 -4 -2,101 -1,153 -0.599 -0'281 -0.111 
3 -4 -1,951 -0.980 -0.457 -0.187 -0.0625 

1 = 1  
K *  = 2.25 

1 -4 -2,156 -1.208 -0.635 -0,295 -0,111 
2 -4 -1.990 -1,016 -0.479 -0.195 -0.625 1 = 2  

K *  ~ 6 . 2 5  3 -4 -1.875 -0.893 -0.386 -0.142 -0'0400 

1 -4 -2.029 -1.052 -0,499 -0.202 -0.0625 
2 -4 -1.905 -0.919 -0.400 -0'146 -0.0400 

1 = 3  
K*=12'25 3 -4 -1.812 -0.825 -0.336 -0.113 -0.0278 

1 -4 -1.934 -0.944 -0.414 -0.150 -0.0400 
1 = 4  2 -4 -1.836 -0,845 -0,345 -0'115 -0'0278 
K*=20 '25  3 -4  -1.760 -0.770 -0.297 -0.0926 -0,0204 
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Table 3-continued. 

?.: -0.8 ’ -0.6 -0.4 -0.2 0 
\ -_ 

--a 1 -0.887 -0,961 -1,942 -9.1 x 10 
2 -0,127 -0 .619~10- ’  -0.34XlO-’ -0.1 --Q: 

3 -0.0396 -0.114 X lo-’ --0.2 X lo-’ -02 

/ = 0  
K* = 0.25 

1 -0.101 -0.273 x 10.’ -0,286X lo-’ -0.96X 0 
2 -0.0332 -0~586 x lo-’ -0.328 x -0.26 x 0 / = 1  

K* = 2.25 3 -0.0149 -0.191 x lo-’ -0,641 x 0 

1 -0.0291 -0.373 x io-’ -0.841 x 1 0 - ~  - 0 . 2 4 0 ~  io-* n 

3 -0,007 18 -0,546X -0.552 x lo-’ 0 
2 -0,0133 -0~128xlO-’ - 0 . 1 8 7 ~ 1 0 - - ~  - 0 . 2 1 6 ~ 1 0 - ~  0 / = 2  

K* = 6.25 

1 -0.0121 -0.928 x --0.734 x - 0 , 8 3 9 ~  lo-” 0 
2 -0.0661 --0.407 x -0.231 x -0.139 x lo-” 0 
3 -0.0401 -0.205 x -0.873 x lo-‘ -0.36 x lo-.” 0 

1 -0.0614 - 0 . 3 1 8 ~  - 0 ~ 1 1 4 ~ 1 0 - ~  - 0 . 1 1 4 ~  0 
2 -0.0375 -0,163 x -0.442 x - 0 . 2 6 0 ~  0 
3 -0.0246 -0.917 x -0.197 x - 0 . 6 ~  0 

1 = 3  
K* = 12.25 

1 = 4  
K* = 20.25 

Table 4. Energy levels for the value of the parameter K = 2mg’/h2 = 10. 

S 

4 -2 -1.8 -1.6 -1.4 -1.2 

1 -40 -34.69 
/ = O  2 -40 -29.10 

3 -40 -26.40 

1 -40 -30.29 
/ = 1  2 -40 -27.13 

3 -40 --25.20 

1 -40 -27.85 
/ = 2  2 -40 -25.70 

3 -40 -24.22 

-35.62 
-24.19 
-19.48 

-26.03 
-20.50 
-17.42 

-21.48 
-18.07 
-15.87 

-41.38 
-21.70 
-15.05 

-23.79 
-16.07 
-12.26 

-17.03 
-12.84 
-10.37 

-56.56 
-21.46 
-12.29 

-23.23 
-13.03 
-8.69 

-13.68 
-945  
-6.59 

q -1.0 -0.8 -0.6 -0.4 -0.2 0 

1 = 0  2 -25.00 -40.11 -133.3 -3.4x1O3 -0.1x 10’” --CO 

3 -11.11 -12.51 -24.5 -0.2 x io3 --CO 

- 
1 -10.00 -2807 -2070 -1.942X lo5 -9.1 x 10” -a 

1 -25.00 -31.96 -58.75 -2.86x 10’ - 0 . 9 6 ~ 1 0 ~  --CO 

I = 1  2 -1141 -10.50 -12.6 -3.28 x 10 -0.26 x lo4 -a 
3 -6.25 -47.05 -4.13 -6.41 - --CO 

1 -11.11 -9.19 -8.03 -0.841 X 10 -0.240X 10’ -a 
/ = 2  2 -6.25 -4.20 -2.75 -0.187 X 10 -0,216 X 10 --CO 

3 -4.00 -2.27 -1.18 -0.552 x 10 --CO 
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r--------- - r L  

2 

I 

'A0 

-2 -i '0 
S- 

Figure 3. Eigenvalues A,(s, 1); (I = 1, 2, 3;  I = 1 

-2 -1 0 
s- 

. Figure 4. Eigenvalues A q ( s ,  2);  q = 1.2 ,  3; 1 = 2. 

-2 

5 

-1 n 

4. Comparison with other works 

Variational calculation has been applied in several ways in order to obtain the ground 
state of the inverse power potential - g / r S + *  ( g  > 0 ) .  
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s- 

- 2  -1 0 

.----- 

1 ~ __ ~ 1 __ ___ __ __ ~ __ L 

Figure 6. Energy levels E,(s, 1 ) ;  q = 1 ,2 ,  3;  = 0, 1 ,2 ;  K = 10. 

Baumgartner (1979), starting from the Schwartz inequality, gives the following 
expression as a lower bound for the ground state 1 = 0 (h2 = 2 m  = 1; -2 < s < -1, g = 1): 

Duchon (private communication) also uses, a variational principle starting from the 
Sobolev inequality (Sobolev 1938)  and gives, in the full interval -2<s  < O ,  the 
following expression (h2  = 2 m  = I):  

( s + 2 ) / 3  - 2 / s  E 0 2 - 3 [ : [ a p ( - - ?  3 ?)] ] 
s + 2  2 ' 2  

In table 5 we compare our numerical results with the bounds given by these two 
authors. 

Table 5. Ground state energy. Exact versus lower bounds ( g  = 1 )  ( h 2  = 2m = 1). 
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EO -2 -1.75 -1.5 -1.25 -1.0 -0.7 -0.5 -0.4 
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Our -1 -0.6214 -0.4380 -0.3223 -0.2500 -0.2220 -0.2985 -0.486 
Duchon -1 -0.66 -0.49 -0.39 -0.33 -0.35 -0.59 -1.22 
Baumgartner -1 -0.6501 -0.4725 -0,3470 -0,2500 
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5. Conclusions 

The analytic solution of the Schrodinger equation for the attractive inverse power 
potential is not known, except of course in the Coulomb case. It was shown, some time 
ago, that for the potential V ( r )  = gr-”’ the Schrodinger equation can be solved in terms 
of some Heun confluent functions (Lemieux and Bose 1949), but eigenvalues and exact 
eigenfunctions have, apparently, not yet been published (Decarreau et a1 1978). 

In this work we give solutions of this problem, using a group approach, starting from 
a Sturmian formulation of the Schrodinger equation. The numerical part appears only 
at the final step, when the compact operator is approximated by finite Hermitian 
matrices. However, we insist on the fact that the given matrix elements are known 
exactly, and therefore we consider our approach as an analytic one. Let us still insist on 
the fact that this technique applies only to ‘regular potentials’ (Landau and Lifschitz 
1966, Simon 1971a) V ( r )  such that 

and V(r )  E R + (L“), which, in contrast with ‘singular potentials’ (Case 1950, Frank et 
a1 1971), own a discrete lower-bounded spectrum. This analytic approach seems well 
suited for the study of the gr--(’+’) potential; the general matrix element of the operator 
replacing the Schrodinger operator is a very simple function of the exponent s and the 
angular momentum 1. Let us also mention that in addition to the spectrum of energy 
levels the wavefunctions can easily be tabulated (Gazeau and Maquet 1979). 

These results can immediately be extended to non-integer values of the angular 
momentum 1(1> - 1/2)  (replacing the factorial functions by a gamma function in the 
expression of the matrix elements A,,(s, 1)). This is therefore applicable to the study of 
confining potentials of the rI-’ kind ( p  > 0). Indeed, the following transformation of the 
dependent and independent variables, 

, 77 ( r ) ,  ( 5 2 )  r l  = r - s / 2  X ( r r )  = r - ( ~ + 2 ) / 4  

( ~ ( r )  = R ( r ) r  where R ( r )  is the radial part of the wavefunction) changes the potential 
-gr-(’+*) with energy levels Eq(s, 1) into a potential g’r’’ [g’ > 0 ,  p = - 2 (s i- 2) /s ]  with 
energy levels E:(& 1’) where 

Particular cases of these transformations have already been used by Rowley (1979) and 
Schwartz (1974). 

Let us note that the numerical difficulties encountered for s close to zero appear for 
large values of p, while the problem is easy to solve for small values of p (just like for 

Let us finally mention that by the transformation (51), the crossings of levels of 
different angular momenta I are related to the crossings of levels for confining potentials 
as indicated by Grosse and Martin (1978). 

- 2 < s <  -0.5). 
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